QUALITY OF SERVICE BASED MINIMAL LATENCY ROUTING FOR INDUSTRIAL WSNS

Seminari i parë shkencorë i Fakultetit të Inxhinierisë Elektrike dhe Kompjuterike

Dr.Techn. Fjolla Ademaj

December 28, 2020

SILICON AUSTRIA LABS

Silicon Austria Labs is a research center and pioneer in electronic based systems.

Silicon Austria Labs propels ideas into innovation in the fields of

- Sensor Systems
- RF Systems
- Power Electronics
- System Integration Technologies
- Embedded Systems
 - □ Wireless Communications

WIRELESS COMMUNICATIONS RESEARCH UNIT

Research focus:

- □ Wireless sensor and actuator networks
 - · Industrial applications
 - · Automotive domain
 - · Localization and tracking
 - Environmental monitoring
 - · Health care

WIRELESS COMMUNICATIONS RESEARCH UNIT

Research focus:

- □ Wireless sensor and actuator networks
 - · Industrial applications
 - · Automotive domain
 - · Localization and tracking
 - Environmental monitoring
 - · Health care

Main topics:

- □ Reliability and security
- □ Multihop communication
- □ Seamless integration of wireless and wired communication networks
- □ Various technologies such as Bluetooth, ITS-G5, 5G
- □ Building a 5G Playground

WIRELESS COMMUNICATIONS RESEARCH UNIT

Research focus:

- □ Wireless sensor and actuator networks
 - · Industrial applications
 - · Automotive domain
 - · Localization and tracking
 - Environmental monitoring
 - · Health care

Main topics:

□ Reliability and security

□ Multihop communication

- □ Seamless integration of wireless and wired communication networks
- □ Various technologies such as Bluetooth, ITS-G5, 5G
- □ Building a 5G Playground

Multihop Communication: QoS-based Routing

Network Discovery Evaluation and Modeling Aspects

Demonstrator

Multihop Communication: QoS-based Routing

Network Discovery Evaluation and Modeling Aspects

Demonstrator

■ Low-cost nodes capable of sensing, processing and communication

WSN Wireless Sensor Network BS Base station

- ---

Benefits:

□ Simple and flexible deployment

- □ Simple and flexible deployment
- □ Low cost

- □ Simple and flexible deployment
- □ Low cost
- Mobility support

- □ Simple and flexible deployment
- □ Low cost
- Mobility support
- Challenges:

- □ Simple and flexible deployment
- Low cost
- □ Mobility support
- Challenges:
 - □ Dynamic channel conditions, fading
 - □ Variations on the link quality

- □ Simple and flexible deployment
- Low cost
- □ Mobility support
- Challenges:
 - □ Dynamic channel conditions, fading
 - □ Variations on the link quality
 - $\hfill\square$ Ensuring deterministic and low latency communication

- □ Simple and flexible deployment
- Low cost
- □ Mobility support
- Challenges:
 - □ Dynamic channel conditions, fading
 - □ Variations on the link quality
 - $\hfill\square$ Ensuring deterministic and low latency communication
 - □ Ensuring low energy operation

Benefits:

- □ Simple and flexible deployment
- Low cost
- □ Mobility support

■ Challenges:

- □ Dynamic channel conditions, fading
- □ Variations on the link quality
- □ Ensuring deterministic and low latency communication
- □ Ensuring low energy operation

- Unique nature of operating WSN imposes challenges at different layers of the protocol stack
 - $\hfill\square$ Fading, multipath effects, equipment noise, interference

- □ A distributed algorithm for the network discovery
- □ Centrally planned routes
- □ Optimized latency for topology
- □ Energy balanced routing
- □ Minimal queuing on the routing/relay nodes

- □ A distributed algorithm for the network discovery
- □ Centrally planned routes
- □ Optimized latency for topology
- □ Energy balanced routing
- □ Minimal queuing on the routing/relay nodes
- Two stage routing algorithm

- □ A distributed algorithm for the network discovery
- □ Centrally planned routes
- □ Optimized latency for topology
- □ Energy balanced routing
- □ Minimal queuing on the routing/relay nodes
- Two stage routing algorithm

- □ A distributed algorithm for the network discovery
- □ Centrally planned routes
- □ Optimized latency for topology
- □ Energy balanced routing
- □ Minimal queuing on the routing/relay nodes
- Two stage routing algorithm
 - 1. Network discovery stage

- □ A distributed algorithm for the network discovery
- □ Centrally planned routes
- □ Optimized latency for topology
- □ Energy balanced routing
- □ Minimal queuing on the routing/relay nodes
- Two stage routing algorithm
 - 1. Network discovery stage
 - 2. Network link stage

A single base station (BS), N_0

- \blacksquare A single base station (BS), N_0
- \blacksquare K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area

- A single base station (BS), N_0
- \blacksquare K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area
- All network elements are part of the set $\mathbf{R} = \{N_0, N_1, \dots, N_K\}$

- A single base station (BS), N_0
- \blacksquare K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area
- All network elements are part of the set $\mathbf{R} = \{N_0, N_1, \dots, N_K\}$
- Relaying concept

- A single base station (BS), N_0
- \blacksquare K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area
- All network elements are part of the set $\mathbf{R} = \{N_0, N_1, \dots, N_K\}$
- Relaying concept
 SNR as link quality measure

- A single base station (BS), N_0
- \blacksquare K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area
- All network elements are part of the set $\mathbf{R} = \{N_0, N_1, \dots, N_K\}$
- Relaying concept
 - □ SNR as link quality measure
 - $\hfill\square$ SNR threshold γ

- \blacksquare A single base station (BS), N_0
- \blacksquare K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area
- All network elements are part of the set $\mathbf{R} = \{N_0, N_1, \dots, N_K\}$
- Relaying concept
 - □ SNR as link quality measure
 - $\hfill\square$ SNR threshold γ
 - \Box Determine nodes with the best quality following the criteria $\langle \mathbf{R}_i \rangle = P(SNR > \gamma)$

- A single base station (BS), N_0
- K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area
- All network elements are part of the set $\mathbf{R} = \{N_0, N_1, \dots, N_K\}$
- Relaying concept
 - □ SNR as link quality measure
 - $\hfill\square$ SNR threshold γ
 - \Box Determine nodes with the best quality following the criteria $\langle \mathbf{R}_i \rangle = P(SNR > \gamma)$
- Recursively repeated

 $\mathbf{R}_{n+1} = \left(\mathbf{R} ackslash \cup_{m=1}^n \mathbf{R}_m
ight)$ respond to \mathbf{R}_n

- A single base station (BS), N_0
- K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area
- All network elements are part of the set $\mathbf{R} = \{N_0, N_1, \dots, N_K\}$
- Relaying concept
 - □ SNR as link quality measure
 - $\hfill\square$ SNR threshold γ
 - \Box Determine nodes with the best quality following the criteria $\langle \mathbf{R}_i \rangle = P(SNR > \gamma)$

Recursively repeated

 $\mathbf{R}_{n+1} = \left(\mathbf{R} ackslash \cup_{m=1}^n \mathbf{R}_m
ight)$ respond to \mathbf{R}_n

 \Box Step 1: Nodes in Layer 1 (\mathbf{R}_1)

- A single base station (BS), N_0
- K sensor nodes $\{N_1, \ldots, N_K\}$ distributed in the operating area
- All network elements are part of the set $\mathbf{R} = \{N_0, N_1, \dots, N_K\}$
- Relaying concept
 - □ SNR as link quality measure
 - $\hfill\square$ SNR threshold γ
 - \Box Determine nodes with the best quality following the criteria $\langle \mathbf{R}_i \rangle = P (SNR > \gamma)$

```
    Recursively repeated
```

n

7/17

DISTRIBUTED NETWORK DISCOVERY

Algorithm 1 Distributed network discovery at BS

- 1: **function** GETSTRUCTURE(**R**)
- 2:
- $\mathbf{R}_{f} = \mathbf{R} \setminus N_{0}$ $n_{\max}, \mathbf{R}^{p}, \mathbf{F}^{K}, \mathbf{B}^{K} \leftarrow \text{FINDMAPS}(\mathbf{R}_{f}, N_{0}, 0, \emptyset)$ 3:
- return $n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K$ 4:

DISTRIBUTED NETWORK DISCOVERY

Algorithm 1 Distributed network discovery at BS

1: **function** GETSTRUCTURE(**R**)

- 2: $\mathbf{R}_f = \mathbf{R} \setminus N_0$
- 3: $n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K \leftarrow \text{FINDMAPS}(\mathbf{R}_f, N_0, 0, \emptyset)$
- 4: **return** $n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K$

Algorithm 2 Distributed network discovery at sensor node

- 1: function FINDMAPS($\mathbf{R}_f, N_n, n, N_{n-1}$)
- 2: N_n .relay $\leftarrow true$
- 3: SENDTO (\mathbf{R}_f , RESPONDSTO(N_n))
- 4: for all $N_c \in \mathbf{R}_f$ do
- 5: if N_c respond to N_n then

$$\mathbf{R}_{n+1} \leftarrow \mathbf{R}_{n+1} \cup N_c$$

7:
$$\mathbf{F}_{N_n} \leftarrow \mathbf{F}_{N_n} \cup N_c$$

8:
$$\mathbf{R}_f \leftarrow \mathbf{R}_f \setminus \mathbf{R}_{n+1}$$

9:
$$n_{\max} \leftarrow n$$

6:

10: for all
$$N_c \in \mathbf{R}_{n+1} \land \neg(N_c.\mathrm{relay})$$
 do

11: SENDTO
$$(N_c, FINDMAPS(\mathbf{R}_f, N_c, n+1, N_n))$$

12: for all
$$N_c \in \mathbf{R}_{n+1} \land \neg(N_c.\mathrm{relay})$$
 do

13:
$$n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K \cup \leftarrow \text{RECEIVEDFROM}(N_c)$$

- 14: return $n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K$
- 1: function RESPONDSTO(N_{n-1})
- 2: $\mathbf{B}_{N_n} \leftarrow \mathbf{B}_{N_n} \cup N_{n-1}$
- 3: return

DISTRIBUTED NETWORK DISCOVERY

Example of the network discovery after the execution of Algorithm 2

• Output of the function FINDMAPS consisting of $\{n, \mathbf{R}, \mathbf{F}, \mathbf{B}\}$

n Layer

- R Set of nodes comprising a layer
- F Set of forward nodes
- B Set of backward nodes

■ Key features: (1) centrally planned routes, (2) minimized latency and (3) energy balanced routing

Algorithm 3 Network link phase

1: function SETROUTES $(n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K)$ for $n = n_{max} - 1; n > 0; n \leftarrow n - 1$ do 2: 3. for all $N_k \in \mathbf{R}_n$ do $\mathbf{F}_{N_k}^u \leftarrow \mathbf{F}_{N_k} \setminus \left(\bigcup_{N \in \mathbf{B}_k \setminus N_k} \mathbf{F}_{N_g} \right)$ 4: 5: $\mathbf{T} \leftarrow \emptyset$ $L \leftarrow \min\{\max_{\#} \mathbf{B}_{N_{\star}}, \#N_{k}\}$ 6: for all $N_q \in \{\mathbf{F}_{N_k}^u, \mathbf{F}_{N_k} \setminus \mathbf{F}_{N_k}^u\}$ do 7: if $L > \#\mathbf{T} + \#N_a$ then 8: $\mathbf{T} \leftarrow \{\mathbf{T}, N_a\}$ 9: 10: $\mathbf{F}_{N_k} \leftarrow \mathbf{T}$ $\#N_{k} \leftarrow \#\mathbf{F}_{N} + 1$ 11: for all $N_a \in \mathbf{R}_n \setminus N_k$ do 12: $\mathbf{F}_{N_a} \leftarrow \mathbf{F}_{N_a} \backslash \mathbf{F}_{N_k}$ 13: $\#\mathbf{B}_{N_k} \leftarrow \#\mathbf{B}_{N_k} - \min_{\#N_i} \{N_i \in \mathbf{B}_{N_k} \land \#N_i > \#\mathbf{T}\}$ 14: return \mathbf{R}^p , \mathbf{F}^K 15:

■ Key features: (1) centrally planned routes, (2) minimized latency and (3) energy balanced routing

Algorithm 3 Network link phase

1: function SETROUTES $(n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K)$ for $n = n_{max} - 1; n > 0; n \leftarrow n - 1$ do 2: 3. for all $N_k \in \mathbf{R}_n$ do $\mathbf{F}_{N_k}^u \leftarrow \mathbf{F}_{N_k} ackslash \left(igcup_{N_- \in \mathbf{B}_- igwedge N_c} \mathbf{F}_{N_g}
ight)$ 4: 5: $\mathbf{T} \leftarrow \emptyset$ $L \leftarrow \min\{\max_{\#} \mathbf{B}_{N_k}, \#N_k\}$ 6: for all $N_q \in \{\mathbf{F}_{N_k}^u, \mathbf{F}_{N_k} \setminus \mathbf{F}_{N_k}^u\}$ do 7: if $L > \#\mathbf{T} + \#N_a$ then 8: $\mathbf{T} \leftarrow \{\mathbf{T}, N_a\}$ 9: 10: $\mathbf{F}_{N_k} \leftarrow \mathbf{T}$ $\#N_k \leftarrow \#\mathbf{F}_{N_k} + 1$ 11: for all $N_a \in \mathbf{R}_n \setminus N_k$ do 12: $\mathbf{F}_N \leftarrow \mathbf{F}_N \setminus \mathbf{F}_N$ 13: $\#\mathbf{B}_{N_k} \leftarrow \#\mathbf{B}_{N_k} - \min_{\mathcal{U} \in \mathbf{N}} \{N_i \in \mathbf{B}_{N_k} \land \#N_i > \#\mathbf{T}\}$ 14: return \mathbf{R}^p , \mathbf{F}^K 15:

■ Key features: (1) centrally planned routes, (2) minimized latency and (3) energy balanced routing

Algorithm 3 Network link phase

1: function SETROUTES $(n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K)$ for $n = n_{max} - 1; n > 0; n \leftarrow n - 1$ do 2: 3. for all $N_k \in \mathbf{R}_n$ do $\mathbf{F}_{N_k}^u \leftarrow \mathbf{F}_{N_k} ackslash \left(igcup_{N_- \in \mathbf{B}_- igwedge N_c} \mathbf{F}_{N_g}
ight)$ 4: $\mathbf{T} \leftarrow \emptyset$ 5: $L \leftarrow \min\{\max_{\#} \mathbf{B}_{N_k}, \#N_k\}$ 6: for all $N_q \in \{\mathbf{F}_{N_k}^u, \mathbf{F}_{N_k} \setminus \mathbf{F}_{N_k}^u\}$ do 7: if $L > \#\mathbf{T} + \#N_a$ then 8: $\mathbf{T} \leftarrow \{\mathbf{T}, N_a\}$ 9: 10: $\mathbf{F}_{N_k} \leftarrow \mathbf{T}$ $\#N_k \leftarrow \#\mathbf{F}_{N_k} + 1$ 11: for all $N_a \in \mathbf{R}_n \setminus N_k$ do 12: $\mathbf{F}_N \leftarrow \mathbf{F}_N \setminus \mathbf{F}_N$ 13: $\#\mathbf{B}_{N_k} \leftarrow \#\mathbf{B}_{N_k} - \min_{\#N_i} \{N_i \in \mathbf{B}_{N_k} \land \#N_i > \#\mathbf{T}\}$ 14: return \mathbf{R}^p , \mathbf{F}^K 15:

■ Key features: (1) centrally planned routes, (2) minimized latency and (3) energy balanced routing

Algorithm 3 Network link phase

1: function SETROUTES $(n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K)$ for $n = n_{max} - 1; n > 0; n \leftarrow n - 1$ do 2: 3. for all $N_k \in \mathbf{R}_n$ do $\mathbf{F}_{N_k}^u \leftarrow \mathbf{F}_{N_k} ackslash \left(igcup_{N_- \in \mathbf{B}_- igwedge N_c} \mathbf{F}_{N_g}
ight)$ 4: $\mathbf{T} \leftarrow \emptyset$ 5: $L \leftarrow \min\{\max_{\#} \mathbf{B}_{N_k}, \#N_k\}$ 6: for all $N_q \in \{\mathbf{F}_{N_k}^u, \mathbf{F}_{N_k} \setminus \mathbf{F}_{N_k}^u\}$ do 7: if $L > \#\mathbf{T} + \#N_a$ then 8: $\mathbf{T} \leftarrow \{\mathbf{T}, N_a\}$ 9: 10: $\mathbf{F}_{N_k} \leftarrow \mathbf{T}$ $\#N_k \leftarrow \#\mathbf{F}_{N_k} + 1$ 11: for all $N_a \in \mathbf{R}_n \setminus N_k$ do 12: $\mathbf{F}_N \leftarrow \mathbf{F}_N \setminus \mathbf{F}_N$ 13: $\#\mathbf{B}_{N_k} \leftarrow \#\mathbf{B}_{N_k} - \min_{\mathcal{U} \in \mathbf{N}} \{N_i \in \mathbf{B}_{N_k} \land \#N_i > \#\mathbf{T}\}$ 14: return \mathbf{R}^p , \mathbf{F}^K 15:

■ Key features: (1) centrally planned routes, (2) minimized latency and (3) energy balanced routing

Algorithm 3 Network link phase

1: function SETROUTES $(n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K)$ for $n = n_{max} - 1; n > 0; n \leftarrow n - 1$ do 2: 3. for all $N_k \in \mathbf{R}_n$ do $\mathbf{F}_{N_k}^u \leftarrow \mathbf{F}_{N_k} ackslash \left(igcup_{N_{-} \in \mathbf{B}_{-} igwedge N_{-}} \mathbf{F}_{N_g}
ight)$ 4: $\mathbf{T} \leftarrow \emptyset$ 5: $L \leftarrow \min\{\max_{\#} \mathbf{B}_{N_k}, \#N_k\}$ 6: for all $N_q \in \{\mathbf{F}_{N_k}^u, \mathbf{F}_{N_k} \setminus \mathbf{F}_{N_k}^u\}$ do 7: if $L > \#\mathbf{T} + \#N_a$ then 8: $\mathbf{T} \leftarrow \{\mathbf{T}, N_a\}$ 9: 10: $\mathbf{F}_{N_k} \leftarrow \mathbf{T}$ $\#N_k \leftarrow \#\mathbf{F}_{N_k} + 1$ 11: for all $N_a \in \mathbf{R}_n \setminus N_k$ do 12: $\mathbf{F}_{N} \leftarrow \mathbf{F}_{N} \setminus \mathbf{F}_{N}$ 13: $\#\mathbf{B}_{N_k} \leftarrow \#\mathbf{B}_{N_k} - \min_{\#N_i} \{N_i \in \mathbf{B}_{N_k} \land \#N_i > \#\mathbf{T}\}$ 14: return \mathbf{R}^p , \mathbf{F}^K 15:

■ Key features: (1) centrally planned routes, (2) minimized latency and (3) energy balanced routing

Algorithm 3 Network link phase

1: function SETROUTES $(n_{\max}, \mathbf{R}^p, \mathbf{F}^K, \mathbf{B}^K)$ for $n = n_{max} - 1; n > 0; n \leftarrow n - 1$ do 2: 3. for all $N_k \in \mathbf{R}_n$ do $\mathbf{F}_{N_k}^u \leftarrow \mathbf{F}_{N_k} ackslash \left(igcup_{N_- \in \mathbf{B}_- igvee N_k} \mathbf{F}_{N_g}
ight)$ 4: $\mathbf{T} \leftarrow \emptyset$ 5: $L \leftarrow \min\{\max_{\#} \mathbf{B}_{N_k}, \#N_k\}$ 6: for all $N_q \in \{\mathbf{F}_{N_k}^u, \mathbf{F}_{N_k} \setminus \mathbf{F}_{N_k}^u\}$ do 7: if $L > \#\mathbf{T} + \#N_a$ then 8: $\mathbf{T} \leftarrow \{\mathbf{T}, N_a\}$ 9: 10: $\mathbf{F}_{N_k} \leftarrow \mathbf{T}$ $\#N_k \leftarrow \#\mathbf{F}_{N_k} + 1$ 11: for all $N_a \in \mathbf{R}_n \setminus N_k$ do 12: $\mathbf{F}_{N} \leftarrow \mathbf{F}_{N} \setminus \mathbf{F}_{N}$ 13: $\#\mathbf{B}_{N_k} \leftarrow \#\mathbf{B}_{N_k} - \min_{\#N_i} \{N_i \in \mathbf{B}_{N_k} \land \#N_i > \#\mathbf{T}\}$ 14: return \mathbf{R}^p , \mathbf{F}^K 15:

Multihop Communication: QoS-based Routing

Network Discovery Evaluation and Modeling Aspects

Demonstrator

MODELING ASPECTS

- $\blacksquare~$ An area of $50\,\mathrm{m}\times50\,\mathrm{m}$
- A single base station (BS)
 - \Box located at the center (0,0)
- N sensor nodes
 - $\hfill\square$ uniformly distributed with density λ

MODELING ASPECTS

- $\blacksquare~$ An area of $50\,\mathrm{m}\times50\,\mathrm{m}$
- A single base station (BS)
 - $\hfill\square$ located at the center (0,0)
- N sensor nodes
 - $\hfill\square$ uniformly distributed with density λ

■ Wireless channel characterization in industrial environments:

¹NIST Channel Sounder Overview and Channel Measurements in Manufacturing Facilities, National Institute of Standards and Technology, Tech. Rep., 2017.

■ Wireless channel characterization in industrial environments:

□ Two-slope path loss model from NIST¹

¹NIST Channel Sounder Overview and Channel Measurements in Manufacturing Facilities, National Institute of Standards and Technology, Tech. Rep., 2017.

Wireless channel characterization in industrial environments:

 $\hfill\square$ Two-slope path loss model from \mbox{NIST}^1

$$\mathcal{L}(d) = \begin{cases} a_1 10 \log_{10}(d) + b_1, & d \le d_{\rm BP} \\ a_2 10 \log_{10}(d) + (b_2 + d_{\rm BP} (a_2 - a_1), & d > d_{\rm BP}) \end{cases}$$

Distinguish between LOS and NLOS

*a*₁, *a*₂ path loss exponents

 b_1, b_2 path gain

d_{BP} breakpoint distance

¹NIST Channel Sounder Overview and Channel Measurements in Manufacturing Facilities, National Institute of Standards and Technology, Tech. Rep., 2017.

(1)

Wireless channel characterization in industrial environments:

□ Two-slope path loss model from NIST¹

$$\mathcal{L}(d) = \begin{cases} a_1 10 \log_{10}(d) + b_1, & d \le d_{\rm BP} \\ a_2 10 \log_{10}(d) + (b_2 + d_{\rm BP} (a_2 - a_1), & d > d_{\rm BP}) \end{cases}$$

Distinguish between LOS and NLOS

SNR of each link

$$SNR_{0,k} = \frac{P_0 L_{0,k}(d) \mathfrak{X}}{S_0}$$

 a_1, a_2 path loss exponents

 b_1, b_2 path gain

d_{BP} breakpoint distance

¹NIST Channel Sounder Overview and Channel Measurements in Manufacturing Facilities, National Institute of Standards and Technology, Tech. Rep., 2017.

(1)

Wireless channel characterization in industrial environments:

□ Two-slope path loss model from NIST¹

$$\mathcal{L}(d) = \begin{cases} a_1 10 \log_{10}(d) + b_1, & d \le d_{\rm BP} \\ a_2 10 \log_{10}(d) + (b_2 + d_{\rm BP} (a_2 - a_1), & d > d_{\rm BP}) \end{cases}$$

¹NIST Channel Sounder Overview and Channel Measurements in Manufacturing Facilities, National Institute of Standards and Technology, Tech. Rep., 2017.

(1)

NUMBER OF RELAYING LAYERS

- **\blacksquare** Maximum number of layers achieved based on the applied SNR threshold (γ)
- From sparse to dense networks

 λ Node density

SNR DISTRIBUTION AT DIFFERENT LAYERS

The SNR distribution at different layers in the network for SNR threshold $\gamma = \{0, 10, 28\} dB$ and node density $\lambda = 0.1$.

Multihop Communication: QoS-based Routing

Network Discovery Evaluation and Modeling Aspects

Demonstrator

- Using standalone wireless nodes
- Nodes are equipped with CortexM0 micro-controller
 - □ Nordic NRF51822 CortexM0
- Nodes are powered by solar panels using ambient light or standard power supply
- Routing algorithm added to the EPhESOS protocol² implementation
- EPhESOS is a TDMA-based protocol and is optimized for low power sensor network applications

²H. Bernhard, A. Springer, A. Berger and P. Priller, "Life cycle of wireless sensor nodes in industrial environments", 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), Trondheim, 2017, pp. 1-9, doi: 10.1109/WFCS.2017.7991943.

Example of a three-layer network

- □ Discovery phase at BS (0 to 15s)
- □ Synchronization (of Layer 1 nodes) starts at 15s until 30s
- □ Sync duration of 15s

Example of a three-layer network

- □ Discovery phase at BS (0 to 15s)
- □ Synchronization (of Layer 1 nodes) starts at 15s until 30s
- □ Sync duration of 15s

Example of a three-layer network

- □ Discovery phase at BS (0 to 15s)
- □ Synchronization (of Layer 1 nodes) starts at 15s until 30s
- □ Sync duration of 15s

Thank you for your attention!

- InSecTT project https://www.insectt.eu/
- Workshop on Wireless Intelligent Secure Trustable Things: bringing IoT and AI together, hosted by the IEEE 7th World Forum on Internet of Things taking place 20-24 June 2021 in New Orleans, Louisiana, USA: https://wfiot2021.iot.ieee.org/
- Conference WFCS 2021 in Linz, Austria: 17th IEEE International Conference on Factory Communication Systems (WFCS), June 9-11 2021 https://konferenzen.jku.at/wfcs2021/

